Abstract

Over the last 150 years, Singapore’s primary forest has been reduced to less than 0.2% of its previous area, resulting in extinctions of native flora and fauna. Remaining species may be threatened by genetic erosion and inbreeding. We surveyed >95% of the remaining primary forest in Singapore and used eight highly polymorphic microsatellite loci to assess genetic diversity indices of 179 adults (>30 cm stem diameter), 193 saplings (>1 yr), and 1,822 seedlings (<1 yr) of the canopy tree Koompassia malaccensis (Fabaceae). We tested hypotheses relevant to the genetic consequences of habitat loss: (1) that the K. malaccensis population in Singapore experienced a genetic bottleneck and a reduction in effective population size, and (2) K. malaccensis recruits would exhibit genetic erosion and inbreeding compared to adults. Contrary to expectations, we detected neither a population bottleneck nor a reduction in effective population size, and high genetic diversity in all age classes. Genetic diversity indices among age classes were not significantly different: we detected overall high expected heterozygosity (He = 0.843–0.854), high allelic richness (R = 16.7–19.5), low inbreeding co-efficients (FIS = 0.013–0.076), and a large proportion (30.1%) of rare alleles (i.e. frequency <1%). However, spatial genetic structure (SGS) analyses showed significant differences between the adults and the recruits. We detected significantly greater SGS intensity, as well as higher relatedness in the 0–10 m distance class, for seedlings and saplings compared to the adults. Demographic factors for this population (i.e. <200 adult trees) are a cause for concern, as rare alleles could be lost due to stochastic factors. The high outcrossing rate (tm = 0.961), calculated from seedlings, may be instrumental in maintaining genetic diversity and suggests that pollination by highly mobile bee species in the genus Apis may provide resilience to acute habitat loss.

Highlights

  • Deforestation and degradation of primary forests are of critical concern for global biodiversity conservation [1]

  • In addition to outright extirpation following habitat reduction, extinctions of local flora and fauna may continue after initial deforestation, as a subset of species within small and isolated habitat remnants may continue to decline in response to stochastic, demographic and genetic factors, i.e. an extinction debt [6], [7]

  • The central catchment, a mosaic of primary and secondary forest patches set within an urban matrix, consists of the Central Catchment Nature Reserve (CCNR) complex (MacRitchie, Lower Pierce, Upper Pierce and Upper Seletar Reservoir forests) and Bukit Timah Nature Reserve (BTNR), and accounts for the largest area of contiguous forest remaining in Singapore: ca. 3,043 ha, of which 2880 ha is in CCNR and 163 ha in BTNR [36] (Figure 1)

Read more

Summary

Introduction

Deforestation and degradation of primary forests are of critical concern for global biodiversity conservation [1]. In addition to outright extirpation following habitat reduction, extinctions of local flora and fauna may continue after initial deforestation, as a subset of species within small and isolated habitat remnants may continue to decline in response to stochastic, demographic and genetic factors, i.e. an extinction debt [6], [7] In line with these predictions, Singapore’s native flora and fauna has been affected by ‘‘catastrophic’’ extinction rates [8], and the continuing loss of native, forest-dependent species remains a concern [3], [9]. Detrimental genetic effects from a reduction in population size can include genetic erosion (i.e. loss of rare alleles and lower genetic diversity), which reduces the genetic variation for selection to act upon [10], [11], and higher inbreeding. These changes may be important for outcrossing species [12], [13], as they can significantly affect fitness, fertility, and offspring viability, as shown by studies of laboratory [14], captive [15], and wild [16] populations

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call