Abstract
In millimeter-wave (mmWave) communications, the antenna gain is a crucial parameter to overcome path loss and atmospheric attenuation. This work presents the design of two cylindrical conformal antenna arrays, made of modified rectangular microstrip patch antenna as a radiating element, working at 28 GHz for mmWave applications providing high gain and beam steering capability. The microstrip patch antenna element uses Rogers RO4232 substrate with a thickness of 0.5 mm and surface area of 5.8 mm × 5.8 mm. The individual antenna element provides a gain of 6.9 dBi with return loss bandwidth of 5.12 GHz. The first antenna array, made by using five conformal antenna elements, achieves a uniform gain of approximately 12 dBi with minimal scan loss for extensive scan angles. In the second antenna array, a dielectric superstrate using Rogers TMM (10i) was used to modify the first antenna array. It enhanced the gain to approximately 16 dBi while still maintaining low scan loss for wide angles. The proposed array design method is very robust and can be applied to any conformal surface. The mathematical equations are also provided to derive the array design, and both array designs are verified by using full-wave simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.