Abstract

In order to achieve wide bandwidth and high gain, we propose a stacked antenna structure having a microstrip aperture coupled feeding technique with a mounted Horn integrated on it. With optimized parameters, the single antenna element at a center frequency of 60 GHz, exhibits a wide impedance bandwidth of about 10.58% (58.9–65.25 GHz) with a gain and efficiency of 11.78 dB and 88%, respectively. For improving the gain, we designed a 2 × 2 and 4 × 4 arrays with a corporate feed network. The side lobe levels were minimized and the back radiations were reduced by making use of a reflector atλ/4distance from the corporate feed network. The2×2array structure resulted in improved gain of 15.3 dB with efficiency of 83%, while the4×4array structure provided further gain improvement of 18.07 dB with 68.3% efficiency. The proposed design is modelled in CST Microwave Studio. The results are verified using HFSS, which are found to be in good agreement.

Highlights

  • Soon after the development of 60 GHz standard that provides a 7 GHz license-free bandwidth worldwide, its popularity became evident at millimeter waves spectrum due to its usage in high data-rate wireless communications at gigabit per second [1, 2]

  • The demand for higher data rate of these multimedia technologies can be resolved with 60 GHz standard as being a viable candidate

  • Microstrip patch antennas are among the best candidates for implementing in microwave and millimeter waves (MMW) frequency and they are good candidates for arrays as well

Read more

Summary

Introduction

Soon after the development of 60 GHz standard that provides a 7 GHz license-free bandwidth worldwide, its popularity became evident at millimeter waves spectrum due to its usage in high data-rate wireless communications at gigabit per second [1, 2]. The huge amount of bandwidth availability attracted the researchers for its use in many terrestrial and space applications In this modern era of consumer electronic gadgets, even telephony and cable operated devices in offices and homes are trending towards wireless technology. Microstrip patch antennas are among the best candidates for implementing in microwave and millimeter waves (MMW) frequency and they are good candidates for arrays as well. Comparing with previous results [21], the proposed single element antenna’s simulation results show improvement in terms of bandwidth and gain at millimeter waves (MMW)

Design of Antenna Element
Design
Design of Antenna Array
59 GHz 62 GHz 65 GHz
50 Ω 50 Ω main feed
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.