Abstract
High-frequency ultrasound imaging has been widely adopted for assessment of the degenerative changes of articular cartilage in osteoarthritis (OA). Yet, there are few reports on investigating its capability to evaluate subchondral bone. Here, we employed high-frequency ultrasound imaging (25 MHz) to examine in vitro the tidemark in cylindrical osteochondral disks (n = 33) harvested from advanced OA knees of humans. We found good correspondence in morphology observed by ultrasound imaging and micro-computed tomography. Ultrasound roughness index (URI) of tidemark was derived from the raw radiofrequency signals to compare with bone quality factors, including bone volume fraction (BV/TV) and bone mineral density (BMD) measured by micro-computed tomography, using the Spearman correlation (ρ). URI of the tidemark was negatively associated with the subchondral plate BV/TV (ρ = −0.73, p < 0.001), BMD (ρ = −0.40, p = 0.020), as well as the underneath trabecular bone BV/TV (ρ = −0.39, p = 0.025) and BMD (ρ = −0.43, p = 0.012). In conclusion, this preliminary study demonstrated that morphology measured by high-frequency ultrasound imaging could reflect the quality of the subchondral bone. High-frequency ultrasound is a promising imaging tool to evaluate the changes of the subchondral bone in addition to those of the overlying cartilage in OA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.