Abstract

We study an optimal high frequency trading problem within a market microstructure model aiming at a good compromise between accuracy and tractability. The stock price is modeled by a Markov Renewal Process (MRP), while market orders arrive in the limit order book via a point process correlated with the stock price, and taking into account the adverse selection risk. We apply stochastic control methods in this semi-Markov framework, and show how to reduce remarkably the complexity of the associated Hamilton-Jacobi-Bellman equation by suitable change of variables that exploits the specific symmetry of the problem. We then handle numerically the remaining part of the HJB equation, simplified into an integro-ordinary differential equation, by a bidimensional Euler scheme. Statistical procedures and numerical tests for computing the optimal limit order strategies illustrate our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.