Abstract

Multiple box cores were collected on the continental shelf in the Mississippi Deltaic Region adjacent to Southwest Pass and analyzed for particle reactive radionuclides 234Th and 7Be to examine seasonal sediment dynamics associated with variations of river discharge and hydrodynamics. Three stations located along a line west of Southwest Pass were cored and reoccupied in October, November, and December of 2003 and March, April, and May of 2004. High-frequency sampling (∼monthly) comparable to the short half-life of the radiotracers ( 234Th t 1/2=24.1 d; 7Be t 1/2=53.3) enabled us to isolate the relative influence that various forcing agents (river discharge, waves, currents) had on sediment inventories of 7Be and 234Th. In addition, the primary source of 7Be (fluvial) differs from 234Th (marine), providing further insight into processes affecting sediment transport and supply. Monthly 7Be inventories showed a significant positive relationship to river discharge ( P=0.03) proximal to Southwest Pass. Sites further from Southwest Pass exhibited little to no relationship between 7Be inventories and river flow. At these sites, monthly 7Be inventories demonstrated a significant positive relationship with average wave orbital velocity ( P<0.01). During our sampling period, the transport of 7Be-rich sediments to sites located on the middle to outer shelf were dependent on sea conditions not river discharge. Relatively high wave orbital velocities potentially allow particles to remain in suspension longer and travel further distances before initial deposition. In addition, 234Th inventories showed evidence of sediment focusing during periods of high wave orbital velocities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call