Abstract

We have used 3-D coupled field structural finite element models to study the acoustic wave propagation characteristics of diamond/AlN/LiNbO3 multi-layered piezoelectric surface acoustic wave devices under the influence of fluid loading for applications in chemical and biological sensing. These devices were studied as a method to increase device frequency and sensitivity, and maintain standard fabrication procedures. Although recent experimental investigations have realized GHz frequency devices based on such multilayered substrates, very little is known about the acoustic wave propagation characteristics in these devices. Identifying the optimum configuration and thickness of the various layers involved still represents a challenge which is addressed in this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.