Abstract

The purpose of this study was to determine whether high-frequency electric stimulation (HFES) could attenuate muscle mass loss during the progression of cancer cachexia in female tumor-bearing mice. Female wild-type (WT) and Apc (Min) mice (16-18 wk old) performed either repeated bouts or a single bout of HFES (10 sets of 6 repetitions, ~22 min), which eccentrically contracts the tibialis anterior (TA) muscle. TA myofiber size, oxidative capacity, anabolic signaling, and catabolic signaling were examined. Min had reduced TA muscle mass and type IIa and type IIb fiber sizes compared with WT. HFES increased the muscle weight and the mean cross-sectional area of type IIa and type IIb fibers in WT and Min mice. HFES increased mTOR signaling and myofibrillar protein synthesis and attenuated cachexia-induced AMPK activity. HFES attenuated the cachexia-associated decrease in skeletal muscle oxidative capacity. HFES in female mice can activate muscle protein synthesis through mTOR signaling and repeated bouts of contraction can attenuate cancer-induced muscle mass loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.