Abstract

High-frequency stimulation of the subthalamic nucleus (STN-HFS) is widely used as therapeutic intervention in patients suffering from advanced Parkinson’s disease. STN-HFS exerts a powerful modulatory effect on cortical motor control by orthodromic modulation of basal ganglia outflow and via antidromic activation of corticofugal fibers. However, STN-HFS-induced changes of the sensorimotor cortex are hitherto unexplored. To address this question at a genomic level, we performed mRNA expression analyses using Affymetrix microarray gene chips and real-time RT-PCR in sensorimotor cortex of parkinsonian and control rats following STN-HFS. Experimental parkinsonism was induced in Brown Norway rats by bilateral nigral injections of 6-hydroxydopamine and was assessed histologically, behaviorally, and electrophysiologically. We applied prolonged (23h) unilateral STN-HFS in awake and freely moving animals, with the non-stimulated hemisphere serving as an internal control for gene expression analyses. Gene enrichment analysis revealed strongest regulation in major histocompatibility complex (MHC) related genes. STN-HFS led to a cortical downregulation of several MHC class II (RT1-Da, Db1, Ba, and Cd74) and MHC class I (RT1CE) encoding genes. The same set of genes showed increased expression levels in a comparison addressing the effect of 6-hydroxydopamine lesioning. Hence, our data suggest the possible association of altered microglial activity and synaptic transmission by STN-HFS within the sensorimotor cortex of 6-hydroxydopamine treated rats.

Highlights

  • In Parkinsons disease (PD), nigrostriatal dopamine depletion is the source of severe disturbances within skeletomotor loops that tightly link cortex, basal ganglia and thalamus [1,2]

  • Microelectrode-guided targeting of the subthalamic nucleus (STN) led to a high rate of successfully implanted STN-HFS electrodes in rats used for gene expression profiling (n = 6; for a typical electrode trajectory, see Figure 2A)

  • As the threshold for inducing typical dyskinetic movements in this animal did not differ from the group average, it was still included in confirmatory RT-PCR validation

Read more

Summary

Introduction

In Parkinsons disease (PD), nigrostriatal dopamine depletion is the source of severe disturbances within skeletomotor loops that tightly link cortex, basal ganglia and thalamus [1,2]. Return to baseline symptom severity is variable after HFS-offset [6] Such latency differences and carry-over effects suggest that in addition to immediate electrophysiological or neurochemical modulation of neuronal activity, HFS leads to adaptive and plastic changes on a longer time-scale. This view is supported by experimental evidence that STN-HFS induces synaptic plasticity in the rat STN [7] and mediates neuroprotection on substantia nigra dopaminergic neurons in a model of neurotoxin-induced degeneration [8,9]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.