Abstract

High frequency pulsed anodising of pure aluminium was investigated with an aim to understand the effect of the anodising parameters on the growth kinetics of the anodic layer and optical appearance of the anodised surface. Anodising was performed in sulphuric acid, and the effect of the pulse duty cycle, applied potential offset, and pulse frequency was investigated. Optical properties of the anodised surfaces are improved upon lowering the anodising potential and by increasing the frequency of the applied potential pulses. Temperature evolution of the samples during anodising was investigated by employing a special flat cell setup equipped with a thermocouple close to the sample. The effect of high frequency pulsing of the anodising potential on the anodising kinetics is presented, which is related to the temperature evolution and dielectric losses, and the effect is compared to the traditional DC anodising process. From the observations, it is postulated that the dominant factor responsible for the improved growth kinetics during high frequency pulsed anodising might not be dielectric losses instead a thickness reduction in the Gouy-Chapman/Helmholtz layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.