Abstract

AbstractCherenkov radiation from a pulse of charge propagating along the magnetic field in a magnetized plasma is analyzed using theory and fluid‐kinetic simulations. Besides radiation into whistler modes, the subject of many previous investigations in laboratory and space, radiation can occur through extraordinary (X) modes. Theory and simulations demonstrate that X mode radiation efficiencies can be orders of magnitude higher than those into whistler modes. Test particle simulations of the dynamics of energetic electrons in the beam‐generated wavefield show that X modes can also induce pitch angle scattering much more efficiently than whistlers. While coherence effects associated with spreading of realistic beam pulses may limit the size of the X mode source region, a simple model of beam dynamics suggests that the size of this region could be substantial (hundreds of meters for ionospheric conditions). These results have potentially important implications for many problems, including understanding losses in the near‐Earth environment and radiation belt remediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.