Abstract

This paper reports on the first demonstration of a 457 MHz AlN Piezolectric Resonant Nanochannel (PRN) for bio-sensing applications in liquid environment. A novel process consisting of 7 lithographic steps was developed to fabricate the PRN. The new resonant device shows an unchanged value of the electromechanical coupling, k <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> (about 0.8 %), whether the channel is filled with air or water and a quality factor, Q, in liquid of approximately 170. The value of k <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and Q are respectively about 2.7 and 2 times the ones recorded for conventional laterally vibrating AlN Contour Mode Resonant Sensors (CMR-Ss) submerged in water. Overall, these results translate in a ~5 fold enhancement in the figure of merit (k <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> -Q product) of the resonant device when operated in liquid and simultaneously permit the efficient delivery of ultra-low concentrations of fluid samples directly on the surface of the sensor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.