Abstract
The unique electronic properties of single-walled carbon nanotubes (SWNTs) make them promising candidates for next generation electronics, particularly in systems that demand high frequency (e.g., radio frequency, RF) operation. Transistors that incorporate perfectly aligned, parallel arrays of SWNTs avoid the practical limitations of devices that use individual tubes, and they also enable comprehensive experimental and theoretical evaluation of the intrinsic properties. Thus, devices consisting of arrays represent a practical route to use of SWNTs for RF devices and circuits. The results presented here reveal many aspects of device operation in such array layouts, including full compatibility with conventional small signal models of RF response. Submicrometer channel length devices show unity current gain (f(t)) and unity power gain frequencies (f(max)) as high as approximately 5 and approximately 9 GHz, respectively, with measured scattering parameters (S-parameters) that agree quantitatively with calculation. The small signal models of the devices provide the essential intrinsic parameters: saturation velocities of 1.2 x 10(7) cm/s and intrinsic values of f(t) of approximately 30 GHz for a gate length of 700 nm, increasing with decreasing length. The results provide clear insights into the challenges and opportunities of SWNT arrays for applications in RF electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.