Abstract

In this paper, a novel structure of Double Gate Schottky Barrier Tunnel Field Effect Transistor (DG-SBTFET) has been designed and simulated. The DG-SBTFET has two sources (NiSi) and two gate metals with an HfO2. Silvaco-TCAD simulator has been used for investigating the analog and radio frequency performance of the DG-SBTFET. The proposed device (DG-SBTFET) is compared with the conventional devices in terms of electrical parameters including ION current, ION/IOFF ratio, RF performance including transconductances (gm), cut-off frequency (f T ), transit time (r), gain bandwidth product (GBP), transconductance generation factor (TGF), and transconductance frequency product (TFP). Further, we simulate the linearity characteristics of the DG-SBTFET device is compared it with other conventional devices, including the second-order voltage intercept point (VIP2), third-order voltage intercept point (VIP3), and third-order input intercept point (IIP3). Hence, the proposed device (DG- SBTFET) is suitable for low-power and high-frequency applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call