Abstract
Ventricular assist devices (VADs) are mechanical blood pumps that are clinically used to treat severe heart failure. Pulsatile VADs (pVADs) were initially used, but are today in most cases replaced by turbodynamic VADs (tVADs). The major concern with the pVADs is their size, which prohibits full pump body implantation for a majority of patients. A reduction of the necessary stroke volume can be achieved by increasing the stroke frequency, while maintaining the same level of support capability. This reduction in stroke volume in turn offers the possibility to reduce the pump's overall dimensions. We simulated a human cardiovascular system (CVS) supported by a pVAD with three different stroke rates that were equal, two- or threefold the heart rate (HR). The pVAD was additionally synchronized to the HR for better control over the hemodynamics and the ventricular unloading. The simulation results with a HR of 90 bpm showed that a pVAD stroke volume can be reduced by 71%, while maintaining an aortic pulse pressure (PP) of 30 mm Hg, avoiding suction events, reducing the ventricular stroke work (SW) and allowing the aortic valve to open. A reduction by 67% offers the additional possibility to tune the interaction between the pVAD and the CVS. These findings allow a major reduction of the pVAD's body size, while allowing the physician to tune the pVAD according to the patient's needs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.