Abstract

The effects of radioactive contamination on the phenotype of free-living organisms are poorly understood, mainly because of the difficulty of capturing the large numbers of individual specimens that are required to quantify rare events such as albinism and tumour formation. We hypothesized that the frequency of abnormalities like albinism and the frequency of radiation-induced diseases like cancer would increase with the level of background radiation, that the two markers of radiation would be positively correlated, and that the reduction in abundance of animals would be greater in species with a higher frequency of albinism and tumour formation, if these markers reliably reflected poor viability. Here we analyzed the frequency of albinistic feathers and tumours in a sample of 1669 birds captured during 2010–2012 at eight sites around Chernobyl that varied in level of background radiation from 0.02 to more than 200μSv/h. We recorded 111 cases of partial albinism and 25 cases of tumour formation. Nominal logistic models were used to partition the variance into components due to species and background radiation. Radiation was a strong predictor of the two markers in birds, with a small, but significant effect of species for albinism. The slope of the relationship between abundance and radiation in different bird species was significantly inversely correlated with the frequency of albinism and tumours, as was to be expected if a common underlying cause (i.e. radiation) affects both variables. These findings are consistent with the hypothesis that background radiation is a cause of albinism and tumours, that albinism and tumours are biomarkers of radiation exposure, and that high frequencies of albinism and tumours were present despite the low viability of birds with these conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call