Abstract

Using transport theory and Monte Carlo numerical simulation, the statistical properties of mode propagation at a frequency of 1 kHz are studied in a shallow water environment with random sound-speed perturbations from linear internal waves. The environment is typical of summer conditions in the mid-Atlantic bight during the Shallow Water 2006 experiment. Observables of interest include the second and fourth moments of the mode amplitudes, which are relevant to full-field mean intensity and scintillation index. It is found that mode phase randomization has a strong adiabatic component while at the same time mode coupling rates are significant. As a consequence, a computationally efficient transport theory is presented, which models cross-mode correlation adiabatically, but accounts for mode coupling using the mode energy equations of Creamer [(1996). J. Acoust. Soc. Am. 99, 2825-2838]. The theory also has closed-form expressions for the internal wave scattering matrix and a correction for an edge effect. The hybrid transport theory is shown to accurately reproduce many statistical quantities from the Monte Carlo simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call