Abstract
Equations describing the high-frequency nonlinear behavior of common-emitter and differential-pair transconductance stages are derived. The equations show that transconductance stages using inductive degeneration are more linear than those using capacitive or resistive degeneration, and that the common-emitter transconductance stages are more linear than the differential-pair transconductance stages with the same bias current and transconductance. The nonlinearity equations can also be used to explain the class AB behavior of the common-emitter transconductance stage with inductive degeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.