Abstract
Sleep disturbance led by BMAL1-deficiency has been recognized both in rodent and non-human primate models. Yet it remained unclear how their diurnal brain oscillations were affected upon BMAL1 ablation and what caused the discrepancy in the quantity of sleep between the two species. Here, we investigated diurnal electroencephalographs of BMAL1-deficient mice and cynomolgus monkeys at young adult age and uncovered a shared defect of dysregulated high-frequency oscillations by Kullback-Leibler divergence analysis. We found beta and gamma oscillations were significantly disturbed in a day versus night manner in BMAL1-deficient monkeys, while in mice the beta band difference was less evident. Notably, the dysregulation of beta oscillations was particularly associated with psychiatric behaviors in BMAL1-deficient monkeys, including the occurrence of self-injuring and delusion-like actions. As such psychiatric phenotypes were challenging to uncover in rodent models, our results offered a unique method to study the correlation between circadian clock dysregulation and psychiatric disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.