Abstract

Post-treatment techniques like the high frequency mechanical impact treatment (HFMI) exhibit a significant fatigue life enhancement of welded joints. The effectiveness of this mechanical impact treatment is primarily based on the combination of three effects: the local hardness increase, compressive residual stresses and reduced notch stress concentration at the weld toe. The goal of the present study was to develop a computationally efficient approach for predicting residual stresses induced by the HFMI process on steel specimens. For that purpose, explicit simulations of this post weld treatment technique were performed utilizing the software package ABAQUS. Although, the focus of this study is to find suitable process and material parameters as input for the numerical simulation. For this, the impact velocity, contact force and permanent indentation depth of a pneumatic HFMI-tool were measured. Concerning material modelling, an enhanced combined material model with strain rate dependency was applied. Furthermore, the simulated residual stress field was experimentally validated by X-ray diffraction and neutron diffraction residual stress measurement. The results of the simulations are in good agreement with the experimental results, showing that the material hardening model used for simulation has a high influence on the calculated residual stress values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.