Abstract

A three-phase, double-percolating composite with Co2Z ferrite particles and nickel particles embedded in a poly(vinylidene fluoride) matrix was prepared by using a simple low-temperature hot-pressing technique. The large ferrite particles in the composite not only act as the magnetic phase but also present as a high volume fraction discrete (nonpercolating) phase, confining polymer and metallic particles into a continuous double-percolating structure of low volume fraction. With the addition of a small number of magnetic nickel particles, a large enhancement in both initial permeability and dielectric constant of the three-phase composite was observed. This can be explained by effective medium approach and percolation theory. The three-phase composite showed both frequency-independent inductive and capacitive properties in the high-frequency range up to ∼500MHz. Such a multifunctional magnetic-electric three-phase composite could be used in high-frequency communications and electromagnetic interference filters not only as an inductor but also as a capacitor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.