Abstract
BackgroundHigh-frequency, low-tidal-volume (HFLTV) ventilation is a safe and simple strategy to improve catheter stability and first-pass isolation during pulmonary vein (PV) isolation. However, the impact of this technique on long-term clinical outcomes has not been determined. ObjectivesThis study sought to assess acute and long-term outcomes of HFLTV ventilation compared with standard ventilation (SV) during radiofrequency (RF) ablation of paroxysmal atrial fibrillation (PAF). MethodsIn this prospective multicenter registry (REAL-AF), patients undergoing PAF ablation using either HFLTV or SV were included. The primary outcome was freedom from all-atrial arrhythmia at 12 months. Secondary outcomes included procedural characteristics, AF-related symptoms, and hospitalizations at 12 months. ResultsA total of 661 patients were included. Compared with those in the SV group, patients in the HFLTV group had shorter procedural (66 [IQR: 51-88] minutes vs 80 [IQR: 61-110] minutes; P < 0.001), total RF (13.5 [IQR: 10-19] minutes vs 19.9 [IQR: 14.7-26.9] minutes; P < 0.001), and PV RF (11.1 [IQR: 8.8-14] minutes vs 15.3 [IQR: 12.4-20.4] minutes; P < 0.001) times. First-pass PV isolation was higher in the HFLTV group (66.6% vs 63.8%; P = 0.036). At 12 months, 185 of 216 (85.6%) in the HFLTV group were free from all-atrial arrhythmia, compared with 353 of 445 (79.3%) patients in the SV group (P = 0.041). HLTV was associated with a 6.3% absolute reduction in all-atrial arrhythmia recurrence, lower rate of AF-related symptoms (12.5% vs 18.9%; P = 0.046), and hospitalizations (1.4% vs 4.7%; P = 0.043). There was no significant difference in the rate of complications. ConclusionsHFLTV ventilation during catheter ablation of PAF improved freedom from all-atrial arrhythmia recurrence, AF-related symptoms, and AF-related hospitalizations with shorter procedural times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.