Abstract
A new class of open single-mode cavities, the nonradiative (NR) resonators, has recently been proposed in order to overcome the limitations of standard cylindrical cavities and Fabry-Perot resonators at millimeter wavelengths. This paper presents the first applications of a NR resonator in W-band pulsed electron paramagnetic resonance spectroscopy. It consists of a cylindrical cavity having a lateral aperture that represents about 35% of its total height. Electron-spin-echo measurements performed on different samples show that the signal-to-noise ratio and the optimal pulse length obtained with the proposed device are comparable to those obtained with the closed cavity used in the commercial W-band spectrometer, at both cryogenic and room temperature. Similar results have been obtained for paramagnetic species optically activated by means of an optical fiber inserted in the aperture of the resonator. The insertion losses estimated for the probe employed with the NR resonator are higher than those of the commercial probe, hence, demonstrating that the proposed cavity holds the promise of improved resonator performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.