Abstract
Modelling of high-frequency electrodeless discharges (HFEDs) in helium is presented. The model combines calculations of electromagnetic field profiles and plasma parameters including kinetics of the excited atomic states. A method of the self-consistent numerical solution for the plasma–field system is proposed. The method takes into account a temporal hierarchy of the kinetic processes in the HFED plasma. A stationary collision-radiative model for helium plasma is developed considering the following equations: (i) the transport equations for the electrons, (ii) the electron energy balance equation, (iii) the population rate equations for balance in the excited states and (iv) the electromagnetic field equations. Discharge properties are investigated in a numerical simulation. The electron density, electron temperature and absorbed power versus gas pressure and external magnetic field amplitude are obtained. The electromagnetic field profiles demonstrate a significant role of the skin effect. The intensities of the lines 587.6 and 728.1 nm are calculated, and are found to be in good agreement with the experimental data. The developed model is used to obtain optimal operation conditions of high-frequency electrodeless helium lamps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.