Abstract

The dynamic structure factor S(Q,omega) of water has been determined by high-resolution inelastic x-ray scattering (IXS) in a momentum (Q) and energy (E) transfer range extending from 2 to 4 nm{-1} and from +/-40meV . IXS spectra have been recorded along an isobaric path (400bar) in a temperature (T) interval ranging from ambient up to supercritical (T>647K) conditions. The experimental data have been described in the frame of the generalized hydrodynamic theory, utilizing a model based on the memory function approach. This model allows identifying the active relaxation processes which affect the time decay of density fluctuations, as well as a direct determination of the Q , T , and density (rho) dependencies of the involved transport parameters. The experimental spectra are well described by considering three different relaxation processes: the thermal, the structural, and the instantaneous one. On approaching supercritical conditions, we observe that the microscopic mechanism responsible for the structural relaxation is no longer related to the making and breaking of intermolecular bonds, but to binary intermolecular collisions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call