Abstract

Fine-crystallized micro-structured surfaces have excellent physical and antifatigue properties. However, flexible fabrication of fine-crystallized micro-structured surfaces is still a challenge for current additive and subtractive machining technologies. This study proposes a high-frequency diamond imprinting (HFDI) technology and a principle for generating micro-structured surfaces based on splicing simple geometry shapes. Micro-structured surfaces, such as micro-images with anti-counterfeiting codes, microscopic QR codes and biomimetic surfaces, were successfully machined by HFDI on polycrystalline nickel. The size of subsurface grains is highly reduced from over 30 µm to less than 1 µm, and a fine-crystallized layer with a thickness of 10 µm is formed. In addition, a cross-scale coupling model of HFDI, based on discrete dislocation dynamics, is constructed to realize dynamic simulation of subsurface dislocation motion and to explore fine crystallization mechanisms. This research holds theoretical and practical significance for realizing high performance and high precision machining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.