Abstract
While it is clear that the volatility of asset returns is serially correlated, there is no general agreement as to the most appropriate parametric model for characterizing this temporal dependence. In this paper, we propose a simple way of modeling financial market volatility using high frequency data. The method avoids using a tight parametric model, by instead simply fitting a long autoregression to log-squared, squared or absolute high frequency returns. This can either be estimated by the usual time domain method, or alternatively the autoregressive coefficients can be backed out from the smoothed periodogram estimate of the spectrum of log-squared, squared or absolute returns. We show how this approach can be used to construct volatility forecasts, which compare favorably with some leading alternatives in an out-of-sample forecasting exercise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.