Abstract

A band of high-frequency modes in the range 50–150 kHz with intermediate toroidal mode numbers 4<n<10 are commonly observed in the core of supershot plasmas on TFTR [R. Hawryluk, Plasma Phys. Controlled Fusion 33, 1509 (1991)]. Two distinct varieties of magnetohydrodynamic (MHD) modes are identified, corresponding to a flute-like mode predominantly appearing around the q=1 surface and an outward ballooning mode for q≳1. The flute-like modes have nearly equal amplitude on the high-field and low-field side of the magnetic axis, and are mostly observed in moderate performance supershot plasmas with τE<2τL, while the ballooning-like modes have enhanced amplitude on the low-field side of the magnetic axis and tend to appear in higher performance supershot plasmas with τE≳2τL, where τL is the equivalent L-mode confinement time. Both modes appear to propagate in the ion diamagnetic drift direction and are highly localized with radial widths Δr∼5–10 cm, fluctuation levels ñ/n, T̃e/Te<0.01, and radial displacements ξr∼0.1 cm. Unlike the toroidally localized high-n activity observed just prior to major and minor disruptions on TFTR [E. D. Fredrickson et al., Proceedings of the 15th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Seville, Spain (International Atomic Energy Agency, Vienna, 1995), No. IAEA-CN-60/A-2-II-5], these modes are typically more benign and may be indicative of MHD activity excited by resonant circulating beam ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.