Abstract

This paper deals with both DC and high frequency characterization of graphene devices, associated to compact electrical modelling. Pulsed I-V and microwave characterization of several Graphene Field-Effect Transistor (GFET) generations fabricated on SiC substrates were investigated in order to derive a first approach for non-linear device modelling. As illustrated here with a Graphene Nano Ribbon FET (GNR FET), a compact electrical model was presented accounting the DC and HF characteristics in broad range of operating conditions. The differences between DC and pulsed I-V characterizations of the GNR FET are investigated and compared to simulations. The small signal behavior and some figure of merits (FOM) like current gain cut-off frequency ft maximum oscillation frequency fmax. The nonlinear modelling of GNR FET is becoming of prime importance along with technological efforts to demonstrate the actual potential of this promising technology. This approach was also applied to conventional GFET, with a large flake of graphene used as a device channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.