Abstract
Detailed investigations of high frequency pulsed blowing and the interaction with the boundary layer at high speed test conditions were performed on a flat plate with pressure gradient. This experimental testbed features the imposed suction side flow of an aerodynamically highly loaded low pressure turbine profile. For actuation, a newly developed coupled fluidic oscillator with an independent mass flow and frequency characteristic was tested successfully. Several oscillator operating points were investigated at one turbine profile equivalent operating point with Reynolds number of 70,000, theoretical outflow Mach number of 0.6, and an inflow free stream turbulence level of 4%. The examined frequency range was between 6.5 and 7.5 kHz and the actuation mass flow rates were varied between 0.68% and 1.32% of the overall passage mass flow. As a result, the flow separation and transition can be controlled and the suction side profile losses even halved. Differences in the interaction with the boundary layer of the different oscillator operating points are also presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.