Abstract
We study the high-frequency behavior of the Dirichlet-to-Neumann map for an arbitrary compact Riemannian manifold with a non-empty smooth boundary. We show that far from the real axis it can be approximated by a simpler operator. We use this fact to get new results concerning the location of the transmission eigenvalues on the complex plane. In some cases we obtain optimal transmission eigenvalue-free regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.