Abstract

Ultrasonic wave propagation is one of powerful and popular methods for measuring mechanical properties of solids even at nano scales. The extraction of material constants from the measured wave data may not be accurate and reliable when waves of short wavelengths are used. The objective of this paper is to study the high-frequency antiplane wave propagation in ultra-thin films at nanoscale. A developed continuum microstructure theory will be used to capture the effect of nanostructures in ultra-thin films. This continuum theory is developed from assumed displacement fields for nanostructures. Local kinematic variables are introduced to express these local displacements and are subjected to internal continuity conditions. The accuracy of the theory is verified by comparing the results with those of the lattice model for the antiplane problem in an infinite elastic medium. Specifically, dispersion curves and corresponding displacement fields for antiplane wave propagation in the ultra-thin films are studied. The inadequacy of the conventional continuum theory is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.