Abstract

Conventional pulsewidth-modulation (PWM) schemes fully depend on a microprocessor (MPU) for extensive real-time computation, intervention, and housekeeping, and are limited to applications at low fundamental frequencies and low precision. At 20-kHz switching, the overhead of a modern 16-bit CPU increases up to 90%, making virtually no time available for regular control tasks. It also has poor cycle-to-cycle accuracy of /spl plusmn/5-10 /spl mu/s. A novel self-managed high-frequency and precision PWM architecture and integrated circuit are developed for distributed drive control systems. This architecture permits near-zero interfacing rate with the coprocessor, thus eliminating the overhead of the MPU's intervention and housekeeping, while being capable of both asynchronous and synchronous PWM at a range of 0-1000 Hz of fundamental frequencies, expandable to several kilohertz. A cycle-to-cycle accuracy of 50 ns is achievable in precision open-loop control. Experimental results verify our new design. This effectively supports distributed ac drive systems with highly coordinated controls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.