Abstract

The neural circuitry underlying fast robust human motor control is not well understood. In this study we record neural activity from multiple stereotactic encephalograph (SEEG) depth electrodes in a human subject while he/she performs a center-out reaching task holding a robotic manipulandum that occasionally introduces an interfering force field. Collecting neural data from humans during motor tasks is rare, and SEEG provides an unusual opportunity to examine neural correlates of movement at a millisecond time scale in multiple brain regions. Time-frequency analysis shows that high frequency activity (50-150 Hz) increases significantly in the left precuneus and left hippocampus when the subject is compensating for a perturbation to their movement. These increases in activity occur with different durations indicating differing roles in the motor control process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call