Abstract

Picosecond acoustic interferometry was used to study the acousto-optic properties of a distributed Bragg reflector (DBR) manufactured from two immiscible polymers (cellulose acetate and polyvinylcarbyzole). Picosecond strain pulses were injected into the structure and changes in its reflectance were monitored as a function of time. The reflectance exhibited single-frequency harmonic oscillations as the strain pulse traversed the DBR. A transfer matrix method was used to model the reflectance of the DBR in response to interface modulation and photo-elastic effects. This work shows that photo-elastic effects can account for the acousto-optic response of DBRs with acoustically matched layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.