Abstract
Multi-Line Transmission (MLT) was recently demonstrated as a valuable tool to increase the frame rate of ultrasound images. In this approach, the multiple beams that are simultaneously transmitted may determine cross-talk artifacts that are typically reduced, although not eliminated, by the use of Tukey apodization on both transmission and reception apertures, which unfortunately worsens the image lateral resolution. In this paper we investigate the combination, and related performance, of Filtered-Delay Multiply And Sum (F-DMAS) beamforming with MLT for high frame-rate ultrasound imaging. F-DMAS is a non-linear beamformer based on the computation of the receive aperture spatial autocorrelation, which was recently proposed for use in ultrasound B-mode imaging by some of the authors. The main advantages of such beamformer are the improved contrast resolution, obtained by lowering the beam side lobes and narrowing the main lobe, and the increased noise rejection. This study shows that in MLT images, compared to standard Delay And Sum (DAS) beamforming including Tukey apodization, F-DMAS beamforming yields better suppression of cross-talk and improved lateral resolution. The method's effectiveness is demonstrated by simulations and phantom experiments. Preliminary in vivo cardiac images also show that the frame rate can be improved up to 8-fold by combining F-DMAS and MLT without affecting the image quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.