Abstract

Conventional ultrasound Doppler techniques estimate the blood velocity exclusively in the axial direction to produce the sonograms and color flow maps needed for diagnosis of cardiovascular diseases. In this paper, a novel method to produce bi-dimensional maps of 2-D velocity vectors is proposed. The region of interest (ROI) is illuminated by plane waves transmitted at the pulse repetition frequency (PRF) in a fixed direction. For each transmitted plane wave, the backscattered echoes are recombined offline to produce the radio-frequency image of the ROI. The local 2-D phase shifts between consecutive speckle images are efficiently estimated in the frequency domain, to produce vector maps up to 15 kHz PRF. Simulations and in vitro steady-flow experiments with different setup conditions have been conducted to thoroughly evaluate the method's performance. Bias is proved to be lower than 10% in most simulations and lower than 20% in experiments. Further simulations and in vivo experiments have been made to test the approach's feasibility in pulsatile flow conditions. It has been estimated that the computation of the frequency domain algorithm is more than 50 times faster than the computation of the reference 2-D cross-correlation algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.