Abstract

A sort of novel high-flux nanofiltration membrane was fabricated by synergistic assembling of graphene and multiwalled carbon nanotubes (MWNTs), in which graphene played the role of molecular sieving and MWNTs expanded the interlayer space between neighbored graphene sheets. The MWNT-intercalated graphene nanofiltration membrane (G-CNTm) showed a water flux up to 11.3 L m(-2) h(-1) bar(-1), more than 2 times that of the neat graphene nanofiltration membrane (GNm), while keeping high dye rejection (>99% for Direct Yellow and >96% Methyl Orange). The G-CNTm also showed good rejection ratio for salt ions (i.e., 83.5% for Na2SO4, 51.4% for NaCl). We also explored the antifouling performance of G-CNTm and GNm with bovine serum albumin (BSA), sodium alginate (SA) and humic acid (HA). Both G-CNTm and GNm possessed excellent antifouling performance for SA and HA but inferior for BSA because of the strong interaction between protein and graphene sheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.