Abstract

In this paper the authors investigate the effect of implantation temperature on the structural properties of diamond implanted with high fluences of Si between 5.3×1017Sicm−2 and 1×1018Sicm−2. In order to reduce radiation-induced damage and to enhance SiC formation the implantations were performed at elevated temperatures in the range from 900to1200°C. Subsequently, all samples were annealed for 10min at 1500°C in a rf-heated furnace. X-ray diffraction revealed the formation of cubic SiC nanocrystallites in a buried layer inside the implanted diamond. The implantation-induced damage was assessed by analyzing graphitization of the surface-near layer using Raman spectroscopy. With increasing Si fluence the implantation-induced damage rises and the nearly perfect alignment of the formed SiC crystallites within the host diamond lattice deteriorates. However, raising the implantation temperature from 900to1000°C reduces the damage in the diamond and increases the amount, size, and epitaxial alignment of the crystalline SiC precipitates. Further increase of the implantation temperature gives no improvement in the quality of the SiC-rich layer. Instead, the damaged diamond converts into graphite and the formation of SiC crystallites is obstructed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call