Abstract

In this paper, we present a high fill-factor micromirror array actuated by self-aligned vertical electrostatic combdrives. To meet the requirements of applications in free-space communication and imaging, each micromirror has three degrees of freedom of motion: rotation around two axes in the mirror plane and linear translation perpendicular to the mirror plane. Our approach is to integrate the high fill-factor reflectors into the fabrication process of the actuators on the wafer-scale. Multilevel silicon-on-insulator (SOI) bonding is utilized to form the high optical quality reflectors and high aspect-ratio vertical combdrive actuators. The wiring for electrical access to the multielectrode per pixel array is fabricated on separate wafers by thin film processing, and flip-chip bonded to the reflector/actuator chip. This architecture overcomes the fill-factor limitation of top-side accessed electrical addressing of mirrors made on SOI. Our 360/spl mu/m pixel size mirror array achieves a 99% fill-factor with optically flat reflectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call