Abstract

The strong scattering limit of the magnetic field dependence of the local phonon-assisted nuclear spin relaxation rate, (NSRR), in two dimensional electron systems, (2DES) with magnetic impurities is calculated. It is shown that the NSRR can be tuned resonantly, by external magnetic field, due to the possibility of matching the electron Zeeman splitting with the energy spacing between the localized vibrational modes created by the lattice distortion around the impurity. This new resonance phenomenon could be used to manipulate, with high precision, the relaxation and decoherence times of nuclear spin based quantum information processing devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.