Abstract

We monitor the fracturing of gas shale using high-pressure methane gas, by studying the changes in gas transport using high-field nuclear magnetic resonance (NMR). This helps us understand the fundamental relation between the newly created pathways and the enhanced gas transport. The ability to make such correlations is challenging, partially because of the difficulty in monitoring the gas transport during the transient fracturing process. Here, we demonstrate a methodology for fracturing gas shale core samples inside a high-pressure, high-field NMR sample tube and studying its effect on gas transport kinetics by tracking the time-dependent NMR signal intensity. The ultralow permeability of shale makes the transient gas transport slow enough to be monitored by a series of NMR signals. The time constant that characterizes the transient process toward equilibrium is directly related to the permeability of core samples. The signatures of permanent fractures in the shale core plugs created by a sudden pressure release are identified by the shorter equilibrium time constant. Although these permanent fractures are not visible to the naked eye, they are ex-situ-verified by microcomputed tomography (microCT). These results demonstrate a NMR methodology to characterize the gas transport and fracturing property of gas shale, promising a better understanding of their relationships.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.