Abstract

High magnetic field solid-state NMR was performed on amphipathic cationic antimicrobial peptides from fish to characterize their secondary structure and orientation in hydrated phospholipid bilayers. High-resolution distance and orientational restraints on 13C- and 15N-labeled amidated piscidins 1 and 3 provided site-specific information establishing alpha-helicity and an orientation parallel to the membrane surface. Few membrane-bound natural peptides with this topology have been structurally studied at high resolution in the presence of hydrated lipid bilayers. This orientation was foreseen since the partitioning of amphipathic cationic antimicrobial peptides at the water-bilayer interface allows for favorable peptide-lipid interactions, and it may be related to the mechanism of action. The enhanced resolution obtained at 900 MHz evidences a determinant advantage of ultra-high-field NMR for the structural determination of multiple-labeled peptides and proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.