Abstract

Field emission from gallium oxide (β-Ga2O3) nanopillars, etched by Ne+ ion milling on β-polymorph (100) single crystals, is reported. A stable field emission current, with a record density over 100 A/cm2 and a turn on field of ∼ 30 V/μm, is achieved. We expect that the high field enhancement factor of about 200 at a cathode-anode distance of 1 μm can be further increased by optimizing the shape of the nanopillar apex. This work demonstrates that the material properties combined with an appropriate nano-patterning can make β-Ga2O3 competitive or better than other well-established field emitters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.