Abstract

High-field electron transport studied in crossed electric and magnetic fields in bulk GaN with doping of 1016 cm-3, compensation around 90% at the low lattice temperature (30 K). It was found the range of the magnetic and electric fields where the non-equilibrium electron distribution function has a complicated topological structure in the momentum space with a tendency to the formation of the inversion population. Field dependences of dissipative and Hall components of the drift velocity were calculated for the samples with short- and open- circuited Hall contacts in wide ranges of applied electric (0 — 20 kV/cm) and magnetic (1 — 10 T) fields. For former sample, field dependences of dissipative and Hall components of the drift velocity have a non-monotonic behavior. The dissipative component has the inflection point which corresponds to the maximum point of the Hall component. For latter sample, the drift velocity demonstrate a usual sub-linear growth without any critical points. We found that GaN samples with controlled resistance of the Hall circuit can be utilized as a electronic high-power switch.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.