Abstract

ABSTRACTHigh resolution 1H NMR spectroscopy at high magnetic fields is employed to study the reaction kinetics of the Si(OCH3)4:CH3OH:H2O sol-gel system. Both the overall extent of reaction as a function of time and the equilibrium distribution of species are measured. In acid catalyzed solution, condensation is the rate limiting step while in base catalyzed solution, hydrolysis becomes rate limiting. A kinetic model in which the rate of hydrolysis is assumed to be independent of the adjacent functional groups is presented. This model correctly predicts the distribution of product species during the initial stages of the sol-gel reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.