Abstract

DNA encoded chemical libraries provide a highly efficient means of screening vast numbers of small molecules against an immobilized protein target. Their potential is currently restricted by the constraints of carrying out library synthesis in the presence of attached DNA tags, for which a limited number of reactions and substrates can be used. Even established reactions, such as Suzuki-Miyaura couplings, do not give efficient coupling reactions across a wide range of substrates and can lead to significant DNA degradation. We developed an efficient protocol for carrying out Suzuki-Miyaura couplings on DNA tagged substrates that proceeds with unprecedented efficiency to the desired biaryl products (>98% on average with no detectable DNA degradation) across a wide range of drug-like substrates using a micellar promoted process with commercial TPGS-750-M surfactant. We have demonstrated the applicability of this method in DEL synthesis by preparing a prototypical two-dimensional 36-member library employing the Suzuki-Miyaura coupling methodology as the final library synthesis step. This work shows, for the first time, that standard micellar surfactants can promote reactions for encoded library synthesis, leading to libraries of exceptional fidelity, and demonstrates the potential to expand the range of accessible DNA compatible chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.