Abstract

We propose to increase the fidelity of two-qubit resonator-induced phase gates in circuit QED by the use of narrow-band single-mode squeezing. We show that there exists an optimal squeezing angle and strength that erases qubit "which-path" information leaking out of the cavity and thereby minimizes qubit dephasing during these gates. Our analytical results for the gate fidelity are in excellent agreement with numerical simulations of a cascaded master equation that takes into account the dynamics of the source of squeezed radiation. With realistic parameters, we find that it is possible to realize a controlled-phase gate with a gate time of 200ns and average infidelity of 10^{-5}.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call