Abstract
Doubly uniparental inheritance (DUI) of mitochondrial DNA (mtDNA) has been demonstrated in both mytilid and unionid bivalves. Under DUI, females pass on their mtDNA to both sons and daughters, whereas males pass on their mtDNA to only sons. In mytilids, the loss of an original male (or M) mitotype, with its subsequent replacement by that lineage's female (or F) mitotype, has been called a role-reversal or, more specifically, a masculinization event. Multiple masculinization events have been inferred during the evolutionary history of mytilids but not unionids. The perceived lack of role-reversal events in unionids may represent a significant difference in the evolutionary dynamics of DUI between the two bivalve taxa or simply a lack of sufficient taxon sampling in unionids. To evaluate these alternative hypotheses, six additional unionoidean bivalve genera were sampled for DUI including one genus from the sister taxon of the Unionidae, the Hyriidae. Phylogenetic analyses of 619 base pairs of cytochrome c oxidase I (COI) from eight genera (nine species) of unionoidean bivalves, plus the sister taxon to the Unionoida, Neotrigonia, revealed that the M and F unionoidean mitotypes were contained in gender-specific, topologically congruent clades. This supports the hypothesis that either role-reversal events do not occur in unionoideans or, if they do occur, their products are ephemeral in an evolutionary sense. Furthermore, the fact that the mantle-tissue-derived Neotrigonia mitotype is the sister mitotype to the unionoidean F mitotype clade suggests that DUI has been operating with high fidelity in unionoids for at least 200 million years. A relatively low incidence of interspecific hybridization in unionoideans and a possibly obligate role for the M mitotype in unionoidean gender determination are offered as potential explanations for the disparate evolutionary dynamics of DUI observed between mytilid and unionoidean bivalves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Evolution; international journal of organic evolution
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.