Abstract
Single rare-earth ions doped in solids are one kind of the promising candidates for quantum nodes towards a scalable quantum network. Realizing a universal set of high-fidelity gate operations is a central requirement for functional quantum nodes. Here we propose geometric gate operations using the hybridized states of electron spin and nuclear spin of an ion embedded in a crystal. The fidelities of these geometric gates achieve 0.98 in the realistic experimental situations. We also show the robustness of geometric gates to pulse fluctuations and to environment decoherence. These results provide insights for geometric phases in dissipative systems and show a potential application of high fidelity manipulations for future quantum internet nodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.